博客
关于我
人工智能、深度学习、机器学习常见面试题141~160
阅读量:493 次
发布时间:2019-03-06

本文共 482 字,大约阅读时间需要 1 分钟。

随机森林算法中,袋外数据(OOB)是一项重要的技术概念。随机森林通过Bagging方法结合多个决策树模型来提升预测性能。在Bagging方法中,Bootstrap每次抽取的样本数量约为1313个,这些样本不会出现在最终的训练集中。这些未被使用的样本被称为袋外数据OOB,其主要用途是替代传统的测试集误差估计方法。

袋外数据的计算方法如下:在随机森林已经生成完毕后,使用袋外数据对模型性能进行测试。将袋外数据作为输入,带入之前生成的随机森林分类器中,分类器会输出相应的分类结果。由于袋外数据的真实标签已知,可以将分类器的预测结果与真实标签进行对比,统计分类错误的数量记为X。袋外数据误差的计算公式为X/O,其中O是袋外数据的总数。这种方法已经被证明是无偏估计,因此在随机森林算法中无需额外的交叉验证或单独测试集来获取测试集误差的无偏估计。

袋外数据的优势在于其无偏性,以及能够更好地反映模型在实际应用中的性能。但其也存在一些不足之处:首先,计算袋外数据需要额外的计算资源,其次,袋外数据的生成依赖于随机森林的具体实现。因此,在实际应用中需要根据具体需求权衡其优缺点。

转载地址:http://tooyz.baihongyu.com/

你可能感兴趣的文章
Mysql学习总结(83)——常用的几种分布式锁:ZK分布式锁、Redis分布式锁、数据库分布式锁、基于JDK的分布式锁方案对比总结
查看>>
Mysql学习总结(84)—— Mysql的主从复制延迟问题总结
查看>>
Mysql学习总结(85)——开发人员最应该明白的数据库设计原则
查看>>
Mysql学习总结(8)——MySql基本查询、连接查询、子查询、正则表达查询讲解
查看>>
Mysql学习总结(9)——MySql视图原理讲解与使用大全
查看>>
Mysql学习笔记 - 在Centos7环境下离线安装Mysql
查看>>
MySQL学习笔记十七:复制特性
查看>>
Mysql学习第一课-mysql的定义及sql语句
查看>>
mysql安全模式: sql_safe_updates
查看>>
mysql安装,卸载,连接
查看>>
MySQL安装之没有配置向导
查看>>
mysql安装出现 conflicts with mysql*的解决办法
查看>>
mysql安装卡在最后一步解决方案(附带万能安装方案)
查看>>
mysql安装和启动命令小结
查看>>
Mysql安装教程(命令行)
查看>>
mysql安装版安装
查看>>
MySQL安装配置教程(非常详细),从零基础入门到精通,看完这一篇就够了
查看>>
mysql安装配置简介
查看>>
MySQL定义和变量赋值
查看>>
mysql定时任务事件清理单表数据
查看>>